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LETTER TO THE EDITOR 

A transfer matrix study of conductivity and permeability 
exponents in continuum percolation 

M Murat, S Marianer and D J Bergman 
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, 
Tel Aviv University, Tel Aviv 69978, Israel 

Received 20 January 1986 

Abstract. The conductivity and permeability exponents for the Swiss cheese model of 
continuum percolation are calculated numerically, using the transfer matrix method. In 
two dimensions, we find the conductivity exponent, r, to equal its universal value I,, = 1.24, 
while the permeability exponent e = 2.53 is considerably larger. The same exponents in 
three dimensions are also determined and found to be r = 2.46 and e = 4.1, greatly exceeding 
the universal value tu, = 1.95. The results are in fair agreement with earlier theoretical 
predictions. 

The problem of non-universality of transport properties in percolating systems has 
been considered by several groups (Kogut and Straley 1979, Ben Mizrahi and Bergman 
1981, Straley 1982). The model treated is that of conduction on a percolating lattice 
where the conductance of the bonds has the probability distribution 

with a < 1. 
For a > 0, this distribution contains a large weight of poor conductors. Using such 

a distribution and specific model systems, Kogut and Straley (1979) calculated the 
critical exponent t defined by B a ( p - pc)'  where X is the macroscopic conductivity. 
They concluded that t ( a )  = tun+ a / ( l  -a) where tun is the exponent one would obtain 
on the same systems with distributions that satisfy P (  g)  + 0 as g + 0 for the conducting 
bonds. Ben-Mizrahi and Bergman (1981) calculated the same exponent using a Migdal- 
Kadanoff renormalisation group transformation and obtained t ( a )  = A +  B/(1 -a), 
with dimension-dependent constants, A and B. Straley (1982) used the renormalised 
Skal-Shklovskii and de Gennes model, and obtained t (  a) = (d -2) v + 1/( 1 - a) where 
d is the dimensionality of the system and v is the correlation length critical exponent. 

Recently, Halperin et a1 (1985) considered the 'Swiss cheese model' (SCM) in which 
spherical (circular) holes of radius a are randomly placed in a 3~ ( 2 ~ )  uniform medium. 
This model is mapped onto a discrete network of bonds where each bond represents 
a narrow region of width 6 persisting over a length ZX&. The conductivity of the 
network can then be calculated as in a lattice model, with the modification that the 
conductance of the bond is given by g ( S ) a  S", where m =; (4) in 3~ ( 2 ~ ) .  Fluid flow 
in the space between spherical grains may also be described by this model. In this 
case, the permeability of each bond is k ( S ) K  6" where S =$ (f) in 3~ ( 2 ~ ) .  

0305-#70/86/050275 + 05$02.50 0 1986 The Institute of Physics L275 



letter to the Editor 

Since S has a distribution which is finite at S + 0 one obtains a distribution of the 
type given in (1) both for g and k, with a = 1 - 1,". This leads to different critical 
exponents t and e for the macroscopic conductivity and permeability, respectively, in 
contrast to the case of lattice percolation where t = e = tu,,. 

Using the nodes and links picture of the percolating backbone, the above authors 
obtained estimates for r and e. These estimates are identical to the expression obtained 
by Straley (1982) with a identified as 1 - l /m. Their results show that the exponents 
indeed differ considerably from the lattice exponent, tun, except for the case of 
conductivity in 2~ where t = run. Some of these predictions were confirmed numerically 
in two dimensions (Sen et a1 1985). 

In this letter we report on simulations to calculate the conductivity and permeability 
exponents for the SCM both in two and three dimensions. Although the SCM maps 
onto a random network we use a square or cubic lattice with a uniform coordination 
number ( 6  in 3~ and 4 in 2 ~ )  and with a random occupation of bonds. We believe 
that this simplification will not affect the critical behaviour. Our results are summarised 
in table 1. 

Table 1. Conductivity and permeability exponents in continuum (1, e)  and lattice (t,,, eun) 
percolation (our error bars are only the statistical errors). The earlier theoretical predictions 
are also presented. 

Our simulations Earlier predictions 

t"" = eun t e t e 

2D 1.24 * 0.05 1.32 * 0.05 2.53 f 0.05 tun 2.74" 
2.5b 
2.5' 

3D 1.95 *0.1 2.46k0.1 4.1*0.3 2.45" 4 M Y  
2.72b 4.72' 
2.5' 4.5c 

' Kogut and Straley (1979)-we substituted our calculated 'tun to evaluate their expression. 
Ben-Mizrahi and Bergman (1981). 
Straley (1982), Halperin et al (1985). 

To obtain these results, we used the transfer matrix method (Derrida and Van- 
nimenus 1982, Derrida et a1 1983). In this method one starts with a layer containing 
L, by L,, bonds (conductors) in the x and y directions, respectively. One then calculates 
the conductance matrix A, given by I, = Xj A,V,, where Ii, V, are respectively the 
current and potential at site i of the layer. The next layer is constructed by adding 
vertical bonds at the sites i and connecting them by horizontal bonds. The new matrix 
A, is then calculated from the old one and from the conductances of the added bonds. 
A long strip is thus built up by repeating this procedure N times, N >> L,, L,. The 
conductance per unit length, G /  N, of the strip between two equipotential plates parallel 
to the xz plane can be calculated. The process is stopped when G I N  saturates at a 
limiting value. 

We set L, = Ly = L for the 3~ calculations and L, = 0, L,, = L for the 2~ ones. 
Finite-size scaling suggests that G I N  OC L-'Iu in 3~ and GI N 0; L-""'+') in 2 ~ ,  where 
v is the correlation length exponent for percolation. 

This method which was originally applied to the conductivity problem can be 
applied with no modifications to the calculation of fluid flow with the permeability 
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replacing conductivity. This follows from the analogy between the equations governing 
both phenomena. For the sake of concreteness we use the terminology appropriate to 
electrical conductivity but the discussion applies to fluid flow as well. 

We have constructed the strips using bonds having conductances which are ran- 
domly chosen from a probability distribution given by ( 1 )  with p = pc ,  the geometrical 
bond percolation threshold. We used p c  = 0.5 for 2~ and p c  = 0.2492 (Wilke 1983) for 
3~ (however, see also Grassberger (1986)). 

In two dimensions we performed our calculations with m = 0 (corresponding to 
a = -a), m = i (a = -1)  and m = 2 (a = 3). These, respectively, correspond to lattice 
conductance ( p ( g )  = ( 1  - p ) S ( g )  +pS(l - g)), continuum conductance and fluid flow 
in the SCM. One does not expect any difference in the critical exponents of the first 
two cases as the probability distribution of g vanishes at g = 0. The calculations were 
carried out for eight values of L, 5 d L 4 40, and for N up to 100 000. In each case, 
the limiting value of G /  N was obtained to within 1% already at N = 50 000. The results 
are presented in figure 1. We see that for L a  10 the points lie on straight lines. The 
slopes of the lines with m = 0 and m = 4 are indeed approximately the same, while for 
m =$  the slope is significantly larger. The slopes were calculated by a least-squares 
fit of the data and we obtained t /  v = 0.93, 1.00 and 1.88 for the three cases. To estimate 
the errors in these values, we calculated the slopes using different ranges of L. We 
believe the statistical errors to be approximately k0.05. Taking Y = $ we get the results 
presented in table 1 .  

5 10 20 40 
L 

I 1 , I 
5 10 20 40 

L 

Figure 1. ( a )  Conductivity per unit length of the strip, G/ N, as a function of the width of 
the strip, L, for two dimensions: (O), lattice percolation; (A) ,  continuum percolation. ( b )  
Permeability per unit length of the strip K /  N. 

Similar calculations were performed in three dimensions. The cases investigated 
were the 3~ analogues of those treated in 2D, namely m = 0 (a = -CO), m = (a = $) 
and m = ;  (a=+). The strips were of size L x L x N  with L=3,4 ,  . . . ,  14 and N =  
100000. Again G I N  saturates at smaller values of N. The results are presented in 
figure 2. The same kind of analysis yields t / v  =2.2*0.1, 2.8*0.1, 4.7*0.3. The 
exponents were obtained assuming v=O.88  (Heermann and Stauffer 1981) and are 
presented in table 1. 

We now discuss our results and compare them with earlier predictions. In ZD, we 
found that the conductivity exponent differs only by 0.08 from its universal value which 
we calculated by the same method. Within our numerical accuracy, this result is in 
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Figure 2. Same as figure 1 ,  but in three dimensions. 

agreement with the theoretical prediction that t = tu, for m -= 1 .  The permeability 
exponent, however, is found to differ considerably from tun. Our result, e = 2.53, is in 
agreement with the lower bound e =$ given by Halperin et a1 (1985) and with the 
prediction of Ben-Mizrahi and Bergman (1981), e = 2.50, obtained by a Migdal- 
Kadanoff renormalisation group calculation. For comparison with the result of Kogut 
and Straley we substitute our tu, in their expression and obtain 2.74, which is somewhat 
higher than our result. 

We note that our results in 2~ agree quite well with those of Sen et a1 (1985) for 
the same model. These authors calculated the transport exponents by solving Kirchoffs 
equations on small L x L lattices using a matrix inversion procedure. This method has 
the inherent drawback that the results depend to some extent on the method used for 
averaging the conductivity over different realisations of the random network. This 
problem is avoided in the transfer matrix method since a sufficiently long random strip 
of width L always leads to a unique result for the conductivity. 

In 3~ both t and e are considerably larger than the corresponding tu, (which 
incidentally is identical to the tu, obtained by Derrida et al (1983) using the same 
method). The conductivity exponent we obtained, t = 2.46 f 0.1, compares well with 
the theoretical predictions, with the exception of that of Ben-Mizrahi and Bergman 
( t  = 2.72). The latter prediction is probably less reliable than others, because the 
method used (Migdal-Kadanoff renormalisation group) becomes less accurate the 
higher the dimensionality. The permeability exponent (e  = 4.1 * 0.3) is found to be 
smaller than all the predictions (e = 4.5-4.7). However, taking into account corrections 
to scaling, visible in our figures as a slight curvature on the log-log plots, our exponents 
would be increased somewhat, probably by not more than 0.1. 

In summary, we have calculated the conductivity and fluid permeability exponents 
in a model of a continuum percolating system. We found deviations from the lattice 
values of these exponents. These deviations are similar to those predicted by theoretical 
considerations. 
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